Korea: Naval Aviation

Posted on Sunday 9 August, 2009 by admin

Naval aviation in Korea.

by Fred Lane

To understand naval aviation in the Korean War, it is necessary to understand the context. Before the Americans dropped the Hiroshima and Nagasaki atom bombs, a highly successful Pacific War had been waged between 1941 and 1945 when, following the lead of the British at Taranto, Japanese and American naval aircraft, dramatically demonstrated their overwhelming tactical and strategic worth. As well as enemy ships, naval aircraft routinely found and destroyed strategic military targets, including airfields and rail yards, in pure “strike” roles. Over time and sometimes at painful cost, the United States Navy, Marines and Army developed a highly successful “Cab Rank” Close Support system, independent of any Air Force component.

Despite decades of neglect, a mere 21 Fleet Air Arm “Stringbag” Fairey Swordfish demonstrated the worth of naval aviation when they single-handedly crippled the Italian battle fleet at Taranto in Operation Judgement, 11 November 1940, more than a year before Pearl Harbour.

Some authors claim that it was naval aviation that saved South Korea from falling to an aggressive North Korea. Others claim that, on the contrary, the Korean War saved naval aviation. In the face of the USAF’s powerful “Victory through Air Power” propaganda campaign in the late 1940s, the USN had been in real danger of losing its aviation component, just as the Royal Navy lost its Fleet Air Arm to the RAF in the 1920s and 1930s. Yet others argue that by late 1951 the Korean War had devolved into a boring military and political stalemate and that concomitant Washington machinations were much more important. There, as in London, the major war focus was on Europe, the Atlantic and nuclear weapons. Korea, they argued, was nothing much more than a sideshow to be fought by reservists and ad hoc forces. In fact, the Korea War proved to be an important testing ground for the “limited war” concept waged with outstanding success by communist forces for the next half century. It was also correlated with a dramatic reversal of declining American naval aviation fortunes.

Post WW II Evolution

In 1946 the USN’s authorised strength included 98 aircraft carriers and 29,125 aircraft. In 1947, even the perennially cash-strapped Australian Government purchased two British light fleet carriers, which led to HMAS Sydney and her carrier air group serving proudly in Korea from October 1951 to February 1952. The carrier had replaced the battleship as the premier capital ship but by June 1950, under the new US Department of Defence, the USN had a mere 15 carriers and 9,422 aircraft in commission, with nothing much of any
For a number of reasons, not the least of which is the danger of trying to interpret biased historical records, this paper will focus initially on some of the better recorded political aspects that preceded the Korean War, examine how they might have influenced biased battle damage reports and look at Sydney's part in Korea's Operation Strangle, as seen by a very minor participant observer.

The vital contributions of naval aviation, particularly US Marine Corps aviation, to the defence of the Pusan Perimeter, the Incheon landings and the withdrawal of the 1st Marine Division from the Chosin Reservoir are acknowledged and are well known. The air transport contributions of USAF, Marine and other forces were novel, important and even vital in many Korean actions, but again they fall outside the immediate focus of this paper, as does the grinding and valiant work done by hundreds of Air Force airow, including those flying the F-51 Mustangs and the Meteors of RAAF 77 Squadron. Helicopters, especially US Marine Corps helicopters, revolutionised many aspects of land and sea warfare in Korea, but they too will only be briefly mentioned.

However, anyone researching hard data about the Korean War will find the library studded with minefields for the unwary, not the least of which are grossly biased enemy damage reports.

US ARMY ASSESSMENT OF AIRCREW DAMAGE CLAIMS

US Army historian Billy Mossman conservatively reports:

> There must be a recognition that damage claims were overstated. In 1952, for instance, the Fifth Air Force in Korea noted that the experience of World War II had proved the validity of halving pilot claims, and that the need for a similar reduction of claims was being borne out by the Korean experience. The USN, in a study of close air support in Korea, went even further, concluding that pilot claims were of such questionable reliability as an index of performance that they should be omitted from consideration altogether.¹

As will be discussed later, personal observations suggest that at least some so-called independent Army-source intelligence was also heavily exaggerated. This might be traced to bad habits condoned in WW II, but there was another reason in 1951, the intense rivalry at many levels between the USAF and USN that spawned, among other things, the “Revolt of the Admirals” in 1949. The author recommends a careful reading of all original data, including action reports backed up by pre- and post-action photographic evidence, before attempting to reach any conclusion regarding comparative Air Force versus Naval Aviation Korean War claims.

“UNIFIED” DEPARTMENT OF DEFENCE

A serious bureaucratic bunfight raged in Washington between 1947 and 1949 regarding the separation of the US Air Force from the US Army and a newly created “unified” Department of Defence that would oversee all the fighting services. Following the theories and leads of Giulio Douhet, Hugh Trenchard and Billy Mitchell, US Air Force advocates, ably led by Secretary of Defence Louis Johnson, claimed that sufficient numbers of the USAF’s grand new B-36 bomber, first flown in August 1946, would make large expensive navies and armies superfluous and therefore a waste of money.² Their strongly held fallback position was that even if navy or army rumps insisted on keeping tiny little auxiliary air forces, simple economy of force and air safety considerations demanded a single authority to purchase all air-related assets and, importantly, to control all air operations in one geographical theatre. That authority, of course, rested with the USAF.

In the three years since WW II, the USN had its carrier fleet decimated. Despite this, Johnson slashed the carrier budget even more. A month after its keel was laid on 18 April, 1949, the Defence Secretary unilaterally cancelled the 65,000-ton super-carrier USS United States without consulting either the Secretary of the Navy or the Chief of Naval Operations (CNO). Forward planning for this ship had mollified USN aviators as they saw carrier after carrier decommissioned and squadron after squadron disbanded. This ship was seen as an essential step towards a nuclear-capable assured future. These and other actions elicited the resignation of the Secretary of the Navy
Unlike the Army, the USN was never keen on the idea of a separate Air Force concept. They were also concerned that "Army plus Air Force" votes would outweigh their lone voice in Joint Chiefs of Staff aviation-related decisions within the new Department of Defence.

Profligate waste
The USN argued that no matter what WW II experiences in the European Theatre might suggest, a separate Air Force was not necessary. The recent Pacific War amply demonstrated how, given sufficient aircraft carriers and other aviation-related resources, strategic aims could be achieved without any Air Force assistance whatsoever. Never warming to GENL MacArthur, the USN had long argued that his USAAF-assisted WW II coast-hopping strategy was far more costly than their direct thrust plan. They were dismayed at the profligate waste of landing craft and amphibious support ships in MacArthur-controlled side shows, including the Australian landings in Bougainville and Tarakan. They scoffed at the Air Force's "daylight precision bombing" mantra as post-war bombing survey after survey confirmed the emptiness of the boast.

The USAF's primary reliance on sledgehammer nuclear weapons, they argued, was costly, immoral and probably irrelevant in future limited wars. In any event, both the Army and the Air Force required a sizeable merchant fleet, and a navy to protect it, to mount and sustain operations anywhere in the world with anything other than nuclear bombs.

Unfortunately, logic and performance were not enough. The USN lost the public relations battle. A virtual media blitz in Congress, newspapers, magazines and even the cinema repeatedly trumpeted a "Victory through Air Power" theme.

Alongside all this Washington bureaucratic upheaval was the international political turmoil of the Berlin crisis of 1948 and communist successes in Czechoslovakia and China in 1948 and 1949. Closer to home, the Malayan Emergency was declared after communist terrorist attacks in 1948 and the French soon found themselves locked into a similar deadly struggle in Indo-China. Then the Soviets surprisingly exploded their first nuclear device on 29 August 1949. This contributed to an April 1950 US National Security Council (NSC) directive that warned of a Soviet Union bent on world domination and recommended sharp increases in US defence spending.

North Korea invades
As the NSC warned, North Korea suddenly invaded South Korea on 25 June 1950 in the first stage of a war that was to last a little over three years. More than half the South Korean Army was destroyed within the first few weeks. By the end of July, UN ground reinforcements, chiefly under-strength American Army units fed piecemeal into the battle, found themselves pushed back into a small "Pusan Perimeter" pocket in the southeast corner of the peninsula.

Here was an opportunity for the first test in the cauldron of war of the Johnson-USAF domination-by-air strategy. If that strategy was sound, North Korea's major communications centres and industrial bases would be bombed to a standstill within weeks, if not days. Its army would then fold and the ground forces would just mop up and take control of the civilian population.
On 27 June 1950 the United Nations Security Council called on member nations to help South Korea. American B-26 Douglas Invader twin-engined tactical bombers and fighters of the Far East Air Force based in Japan commenced interdiction raids that night. B-29s followed up with heavier bombardments the next day.

Chiefly British Commonwealth warships initiated a highly successful naval blockade of the entire Korean coast within hours of the UN resolution. HMS Triumph, a British light fleet carrier with about 24 aircraft aboard, and USS Valley Forge, an American Essex class carrier with about 70 aircraft closed Korea. Triumph launched 12 Seafire Mk 47s and seven Fireflies to raid Haeju airfield at 0615, 3 July 1950. Valley Forge launched a series of raids against Pyongyang airfield using 12 AD Skyraiders, 16 F4U Corsairs and eight F9F-2 Panthers about the same time. The Panthers shot down two Yak-9Ps, a Spitfire-equivalent Russian-built fighter bomber.

Seafires Mk 47 aboard HMS Triumph, in March 1950 off Subic Bay (above). An ASW Firefly (below) warming up for launch on Sydney’s catapult, with a borrowed USN HO-3S1 (S-51) helicopter in the background.
However, the enemy was not responsible for the first naval aviation losses in Korea. The next day a Valley Forge AD Skyraider received flak damage. It made a flapless approach, hurdled the barriers, destroyed one AD and two F4Us, and damaged three other aircraft in the forward deck park. On 28 July, Triumph lost her first aircraft, a Seafire, shot down by a “friendly” B-29, in a classic communications failure and aircraft misidentification incident.

One reason for the B-29/Seafire communications failure was a direct outcome of the earlier Washington bunfight and a MacArthur-imposed command structure in Korea. Although a central command knew just about what was happening everywhere, there was little cross-information between the various commands in the same geographical area at the tactical level. From the start of the Korean War, as James Field notes:

For the conduct of the air campaign, control was centralised at the highest possible level and preplanned operations were the rule. From this structure had developed a communications system with large capacity for routine transmission of orders and reports between central command post and operating air bases, but with limited provision for tactical communications at the scene of action — Air Force verbosity swamped the less capacious naval circuits — an extreme example was the grandfather of all radio messages received by Task Force 77 in November 1950, which took 8,000 encrypted groups to set forth the air plan for one day, and which required over 30 man-hours for processing.

Another well-forecast problem was that American navy and air force aircraft could not talk to each other or to opposite number close support controllers over the battlefield except on two VHF radio frequencies that were so overloaded that they were frequently unusable.

In the early days, many USN aircraft were forced to jettison their bombs before landing back on the carrier because they could not talk to ground controllers. Other very serious early problems included incompatible USN and USAF aeronautical charts and very poor target intelligence.

Understanding the Australian naval aviation contribution to the Korean War is sometimes difficult because it is poorly recorded and there are many traps for the unwary in literature searches. For instance, the Americans who discuss naval aviation tend to focus on the 11 big and capable Seventh Fleet Essex class carriers that served in Korea from time to time. They tend to either ignore or lump in the contributions of the five reasonably capable British Commonwealth light fleet carriers, HMAS Sydney, HMS Triumph, HMS Theseus, HMS Glory and HMS Ocean, with the five frequently anonymous and usually single-role USN jeep carriers, such as USS Rendova and
USS Sicily, that were significantly smaller and carried half their aircraft. More often, the RN and RAN carriers are ignored.

HMAS Sydney carried 24 RAN Sea Furies, such as this one from 805 Squadron and 12 Fireflies.

When Sydney is not ignored, the associated data are frequently in error, even in Australian publications. For instance, the number of sorties flown by Sydney in Korea varies from 4,196 according to Eric Grove,9 to 2,366 according to the official RAN historian, Joe Straczek.10 The 2,366 figure is probably closer to the truth, but by the time Sydney’s tour ended, there was considerable internal inconsistency between Sydney’s catapult data, aircraft maintenance books and operations room logs.

Despite efforts to correct the error, the official RAN website said for years that Sydney carried 871 Squadron aboard.11 The RAN never had an 871 Squadron, it should read 817 Squadron. That was corrected after about 30 years. The modern website also nearly correctly says that 11 aircraft were lost and 77 damaged while delivering 802 bombs and 6,359 rocket projectiles.

Perhaps consolidated reports of United Nations aircraft casualties are least liable to error but it is sometimes difficult to determine exactly what losses were recorded by what command at what phase of the war. It is easy to be bewildered by the frequently changing alphabet soup systems that identified American carrier and amphibious forces, such as TF 77, TF 90, TF 95 and TF 96; also individual carrier types, such as CV, CVA, CVL, CVS and CVE; as well as aircraft squadrons and groups such as VMA, VMFS, CAG, ATG (from 1952), and 1st MAW versus MTACS-2.

Again, simple aircraft designators can be confusing. The B-26 was the Martin Marauder in WW II, but since 1948 and in the Korean War the B-26 was the Douglas Invader, which was called the A-26 in WW II. Helicopter designators were an almost indecipherable jumble, with virtually identical aircraft having totally different designators and type names according to the nation or service that flew them and the roles they performed. It is also frequently difficult to confirm whether RAAF, RAN, RN, South African Air Force and even US Marine Corps aircraft contribute to both USAF and USN consolidated data tables.

RAN aviation rarely mentioned

Even relatively careful and sympathetic authors like Odgers have been led astray. Although five were destroyed, only one, not four, aircraft were lost overboard from HMAS Sydney during Typhoon Ruth.18,19 Odgers and many others also neglect an interesting international/interservice RAN-related rescue, discussed later, of the co-pilot of an American B-29 shot down in the Battle of Namsi on 23 October 1951.20

Just as the British and Americans misused their carriers early in WW II, USN carriers were also forced into the aircraft transport role. The very capable Essex class USS Boxer loads up USAF F-51 fighters for Korea in July 1950 (left).
Bad weather also interfered with aircraft carriers (and most land bases). Double-lashed Sea Furies and Fireflies ride out October 1951’s Typhoon Ruth in Sydney’s deck park.

Finally, in a highly regarded book, BGEN Cyril Barclay either misidentifies his aircraft or the date when he says, in a footnote, that “Royal Navy and South African Air Force planes” contributed to Close Air Support of the Commonwealth Division between 31 October and 26 November 1951. There was no operational RN carrier within a thousand miles of Korea at that time. Sydney supplied the aircraft.

Some claims, never made by the aircrew or operating authority concerned, are later exaggerated by others. It is quite untrue that the Sea Fury recorded “many kills” of “Soviet MiG 15 fighters” as stated by Enzo Angelucci. Only one MiG 15 was ever shot down by Sea Furies. Six Sea Furies led by LEUT P. Carmichael, RN, 802 Squadron, HMS Glory, shot down a lone MiG 15 on 9 August 1952 off Korea.

All this relates to weighing the efficacy of naval aviation in Korea. Whose data should be used? This is a difficult question.

Early USN claims were reasonably accurate when they were confirmed by hard photographic evidence, e.g. Valley Forge Action Report 16-31 July 1950. But personal experience suggests that later American reports might well be biased, perhaps for political reasons associated with the very survival of USN naval aviation and the attempted takeover of all things air by the USAF. It is dangerous trying to compare one set of “official” biased reports against another set of “official” biased reports.

Beware also of simple sortie number comparisons, even for similar-category aircraft. For instance, the USAF might have flown far more fighter-bomber sorties to the Pusan Perimeter than the USN, USMC and RN, but effect, in terms of weight of high explosive delivered on target on time, is what counts. Many early USAF fighter-bomber Close Support sorties were inappropriate. Jet aircraft with only two small rockets or just .5 machine guns sometimes monopolised the radios, air space and time over the front lines while more capable USN and USMC aircraft were forced to wait or even to jettison their eminently more suitable bombs or larger rockets.

Again, the USAF took great pride in their “daylight precision bombing”, particularly from B-29s. However, the USN cleaned up USAF B-29 failures many times, e.g. Wonsan oil refinery 13 July 1950 and the Seoul rail bridge 19 August 1950. Many argue that the war was brought to a conclusion not because of USAF or other influence but because of the USN’s shifts to heavy air strikes on strategic targets, particularly power plants, in June-October 1952.

Conservative RAN claims

On the other hand, RAN aircrew claims were deliberately conservative. For instance, RAN aircrew from HMAS Sydney claimed a North Korean Army divisional headquarters building destroyed in 6 October 1951 raid, but nothing else. An American Army ground-based intelligence source, “Leopard”, credited the same raid with not only destroying that building but also many troops, stores, vehicles, outlying shacks and other booty. RAN aircrew found this very hard to believe and it was never included in any formal RAN damage claim.
It was perhaps no coincidence that about that time that even the USAF Fifth Air Force was trying to convince the CinCFE (GENL Ridgway, who had relieved the sacked GENL MacArthur in April 1951) that it was time to change its costly Operation Strangle strategy.

Operation Strangle

What was Operation Strangle? Following a similarly-named operation in Italy during WW II, Operation Strangle (Korea) was devised by the USAF Fifth Air Force Vice Commander, BGEN E.J. Timberlake, in May 1951, to interdict enemy road and rail traffic before it could resupply the front lines. Eight north-south routes were identified, 20 to 80 miles north of the foremost troops. There was some overlap, but generally the Fifth Air Force (including aircraft from West Coast carriers such as HMAS *Sydney*) was responsible for the two western routes. TF 77 targeted the two central routes from carriers normally deployed off the East Coast, while the mainly shore-based Marines took care of the three easternmost routes.

The RAN chose Australian Fireflies for bridge-dropping and tunnel-blocking tasks. They usually carried two 500 lb bombs and 240 rounds of 20 mm. After shifting in late October 1951 from a 30-degree dive bomb to a 10-degree anti-submarine glide bomb profile, with 37-second delay fuses, Firefly pilots became expert at dropping bridge spans and blocking tunnels. For armed reconnaissance sorties of the road, rail and waterways networks, RAN Sea Furies typically carried eight three-inch ballistic rockets with 60 lb HE heads, 600 rounds of 20 mm and two 45-gallon drop tanks. Unlike the RAAF, USAF and USN, no RAN aircraft ever carried napalm in Korea.

The USAF contributed to the interdiction tasks with, for instance, day and night sorties from about 100 A-26 Invaders (above), but during Sydney’s tour, the USAF’s main interest after paying off their P-51 Mustangs lay in big B-29 Superfortress raids and F-86 Sabre fighter sweeps.

The USAF’s Far East Air Force (FEAF) allocated about 100 B-26 Douglas Invader medium bombers as night intruders and their entire F-84 Thunderjet fighter-bomber fleet to Operation Strangle. Despite some modest success in its early months, aircraft losses quickly mounted as the North Korean and Chinese displayed unexpected skills at camouflage, bridge repair, logistic flexibility and, particularly, shooting down aircraft with light weapons. Between August 1951 and March 1952 FEAF lost no fewer than 243 fighter bombers and another 290 sustained major damage. This was four times the aircraft replacement rate, if those aircraft with major damage are included. In human terms, 245 airmen were killed or missing and 34 wounded.

Sydney’s losses included three 805 Squadron pilots, 11 aircraft and another 77 damaged while making 2366 sorties and dropping 802 bombs and 6359 three-inch rockets.

Bridges were dropped, tunnels were blocked and virtually no traffic moved by day across the middle of North Korea during Sydney’s watch. Trucks and trains moved at night, but they were difficult to see. Operation Strangle reduced rail traffic to about five percent of its pre-war capacity during its first couple of months, but together with increased night road transport and even human A-frame back-pack porters, that limited capacity was sufficient to support the static enemy front line. Despite targets being sown randomly with up to 24 hours delay-fused bombs, most simple road and rail track cuts were repaired or by-passed within hours. Big bridges over fast-flowing rivers were harder to repair but, given time, nothing seemed to daunt the brilliant enemy engineers and their seemingly endless supply of labour and repair material. The enemy also quickly worked out what the next most likely target might be and redeployed their light anti-aircraft weapons accordingly.

Originally planned to last 45 days, Operation Strangle was extended continuously as it tried to meet its objectives. By December 1951, the Fifth Air Force had concluded that Operation Strangle was not working, but in the absence of an acceptable alternative, General Ridgway insisted that it continue.

Other sorties

Not all of Sydney’s sorties were pure Operation Strangle. There were self defence CAP sorties and two or three times a month a Sea Fury pilot might load up with 500 lb or 1000 lb bombs for pre-briefed strikes, sometimes on the East Coast. At other times Sydney’s aircraft might conduct Naval Gunfire Support shoots (TARCAP) with anything from a battleship to a frigate. Other sorties included Photo Reconnaissance, Close Support, Rescue CAP (RESCAP), RAS convoy CAP (CONCAP) and rare anti-shipping strikes.

The Fireflies carried a pair of 250 lb depth charges on daylight anti-submarine patrols while CAP Sea Furies just had loaded guns. No submarine was ever found by Sydney’s anti-submarine patrols and no enemy aircraft was ever intercepted by Sydney’s CAP.
The carriers operated in an environment that included riding out seasonal typhoons. Sydney was hit by a particularly severe Typhoon Ruth on 14-15 October 1951 that killed 500 Japanese ashore. Contrary to Odgers and Catchpole, only one Firefly (but also a motor boat and a forklift) were lost overboard and another four aircraft tied down on the flight deck were seriously damaged. Aircraft damage was caused mainly by double-tied chocks slipping out after failure to batten them with strips of wood. The Hangar Party battened their chocks and their aircraft remained undamaged, despite some heavy stores and equipment coming adrift.

Sydney typically spent about 10 days on patrol, with half to one day around the middle being devoted to Replenishment at Sea (RAS). Five to ten days in harbour followed, before repeating the cycle. Her 36 aircraft embarked (plus four spares) flew about 400 offensive sorties a month. A maximum of 89 Sydney sorties were flown in one day and 147 in two consecutive days.

For the data pedants, the author can vouch for the approximate accuracy of most of the following Sydney laundry list of claims by her CBALO section:

Sydney's aircraft, in total, killed 1428 troops, destroyed seven vehicles, seven field guns, and dropped 47 rail and four road bridges. Most of these bridges had, of course, been dropped more than once. The aircraft had demolished more than 1000 buildings or troop shelters, sunk 39 junks and 66 sampans or barges and destroyed 234 ox carts. Sixteen ammunition dumps and seven fuel dumps were blown up.

All this was achieved in 2366 sorties for the cost of three lives and 11 aircraft. Nearly a third of those sorties were self-defensive, in the form of CAP or ASW patrols, or non-offensive (e.g., return from diversion Kimpo to carrier.) Sydney's aircraft had been hit by flak 87 times, an average of about once every 18 (operational) sorties.

Because so few action photographs were ever published, it may be assumed by some that Sydney's aircraft rarely left the ship. Unfortunately, a mentally disabled senior photography sailor ditched nearly all of Sydney's camera gun and other film records into Hong Kong Harbour by after being told to clean up his section for Captain’s Rounds in February 1952. Only private snapshots and a few photographs sent on ahead remain.

The big USN carriers maintained a much higher work rate. They flew a total of about 2827 offensive sorties a month from about 70 aircraft in each of between one and four carriers deployed on station. Their AD Skyraiders carried a much heavier bombload than RAN aircraft: one 1,000 lb plus two 2000 lb bombs or half a dozen variations of rockets and smaller bombs plus four 20 mm guns. The F4U Corsairs also handled a bigger and more versatile bombload than the Sea Fury, but they mounted only .5 inch machine guns. The bigger USN carriers also conducted limited night operations.

The US Marines were Close Support experts and flew their F4U Corsairs from both their own dedicated carriers and ashore. Their intervention in the Pusan Perimeter in July and August 1950, their coverage of the Inchon invasion in September and their protection of the November-December 1950 withdrawal from the Yalu must be considered textbook Close Support. They also invented the forerunner of the aerial command centre. After experiencing severe communications problems with hard-pressed troops in the mountainous terrain around the Chosin Reservoir, they quickly threw a bunch of radio sets into a Douglas DC4 transport in December 1950 and preserved command and control during the withdrawal.

RESCAP

In the event of an aircraft being shot down, the Joint Operations Centre (JOC) had the theoretical ability to stop the whole air war and divert all airborne aircraft or launch others to aid aircrew survivors. A Sea Otter rescue by Triumph's amphibian of a Corsair pilot on 29 July 1950 was the first and last for that aircraft type in Korea. USAF Dumbos (Grumman SA-16 Albatross twin-engined flying boats) were also used throughout the Korean War to supplement the Angel (usually Sikorsky HO-3S1s or S-51) helicopters and smaller warships in this role.

An RAN Sea Fury spotted a USAF B-29 co-pilot who baled out into the Yellow Sea north of the Chinnampo Estuary after the Battle of Namsi on 23 October 1951. In a classic example of international and interservice cooperation, the survivor was spotted by Sea Furies, then Sydney scrambled a Firefly with a G-dropper dinghy. A motor boat from HMAS Murchison subsequently picked up the downed pilot from the middle of a minefield as he was being swept towards the shore.
Sydney’s SBLT Ian MacMillan crash-landed his Firefly in the Chaeryongang Waterways area on 26 October 1951 after being hit by AA fire. MacMillan and his observer, Hank Hancox, came under heavy automatic weapons fire from soldiers in the area. The enemy were initially kept at bay by orbiting RAN Fireflies and Sea Furies, but they were recalled when RAAF Meteors, tasked by JOC, arrived. Following hand signal directions from the Air Group Commander, who happened to be flying that day, the two Sea Furies with the best fuel states elected to suffer selective “radio failure” and failed to head the recall message, which was fortunate, because the Meteors had to leave some 20 minutes before the helicopter arrived.

The Sea Furies protected the pair until Sydney’s borrowed USN helicopter, piloted by USN CPO A.K. Babbitt, performed the longest helicopter rescue transit over enemy territory in the Korean War, courtesy of a convenient 25-30 knot tail wind on the long inbound leg. The helicopter and the Sea Furies landed safely near Seoul with all fuel gauges reading less than zero. This operation was successful in part because MacMillan and Hancox used RAN-introduced fluorescent panels to communicate with the RESCAP aircraft and to direct supporting fire towards enemy machine guns and other fire.

RAN Innovations
The RAN was responsible for a number of innovations in Korea. These included red and yellow fluorescent panels for RESCAP communications, worn as scarves. These were subsequently adopted by the USAF. Unlike the USN and many RN aircrew, all RAN aircrew trained thoroughly in Close Support, Naval Gunfire Support, Artillery Spotting and Photo Reconnaissance. Sydney was also the first to apply the seemingly simple “Lavender Line”, named after Sydney’s Flight Deck Officer. This line, painted on the flight deck, contributed to Sydney being the first carrier not to taxi an aircraft overboard from the forward deck park. Because of tighter drills, Sydney’s single catapult launch rate was frequently as good if not better than the twin-catapult USN carriers. Its landing rate was also usually better, but that was probably more a function of operating on a shorter deck than anything else.

As Sydney was leaving in February 1952 and possibly prompted by Sydney’s urgings, MGEN Jacob Smart, the FEAF deputy operations commander, commissioned a study that counted massive Operation Strangle losses for little gain. The study recommended change to an Air Pressure Strategy that included some interdiction, but prioritised destruction that would cause “permanent loss to the enemy and... drain his strength".

USN major strikes
Following the defection of North Korean BGEN Lee II on 21 February 1952 and his debriefing by USN officers, it was learned that the enemy was delighted with the Washington policy of exempting the big Yalu River hydroelectric generating stations from attack. They supplied power to China as well as North Korea. Initiated by USN TF 77 staff officers, approval was eventually obtained to take out these targets with USN dive bombers. The naval aircraft had a better chance than B-29s of hitting the target without overflying China or, worse, accidentally bombing China. Between 23 and 27 June 1952, coordinated attacks by USN and USAF aircraft destroyed 11 of the 13 generating plants in North Korea, eliminating 90 per cent of their electrical power.
automatic weapons, many radar-controlled. On 23 June 1952, a three-carrier strike force of 35 AD Skyraider dive bombers, each loaded with one 1,000 lb and two 2,000 lb bombs, were protected by 84 USAF F-86 Sabres and 24 USN F-9F Panthers. The USAF followed up with coordinated attacks from 124 F-84 Thunderjets, but their tiny bombload made it doubtful that they contributed much. No aircraft was lost, although one diverted to Seoul to land wheels up after receiving flak damage. The Suiho bombing alone resulted in a 23 per cent loss of electrical power in northeast China and caused serious Chinese production shortfalls. The four-day campaign reduced power by 90 per cent in North Korea, causing a two-week blackout and serious disruptions to industry and agriculture.

However, Chinese and Soviet technicians rushed to repair the damage from these raids with small generating plants. Over time, these countermeasures, together with power-saving economies, successfully insulated the front lines from the effects of the raids.38

The policy of hitting power stations and other major military and industrial targets deep inside North Korea continued for six months or so but the USN had to jockey with the USAF for operational control of combined or single-service raids on the remaining few prime targets. These included massed USN/USAF raids on military targets in Pyongyang, the Sindok lead and zinc mine and the Aoji synthetic oil refinery. The latter target was up near the Russian border, way beyond the range of USAF dive bombers and could not be bombed by B-29s without them overflying Russia.

The 8 October 1952 raid on the rail centre of Kowon, a target with a bad flak reputation, was the last time USAF B-29 bombers were used in conjunction with USN aircraft in Korea. Ten B-29s suppressed flak very successfully with 500 lb VT-fused bombs, just before 89 USN aircraft bombed and rocketed the target. No aircraft was lost.

Subsequently, USAF policy was changed to permit B-29s to bomb only by night. It was perhaps no coincidence that this policy change was correlated not so much with MiG day fighter activity, the official reason, but to avoid the USAF being seen in a support role, like flak suppression, for USN strategic bombing, long regarded as the USAF’s sole prerogative.

Cherokee strikes
In the final six months, starting slowly from about mid-October 1952, Seventh Fleet naval aircraft primarily supported front line troops with another naval initiative, Cherokee strikes. These were concentrated attacks on pre-briefed targets, generally 20 to 40 miles from the front line but they had a chequered history. If they were regular Close Support, they should be closely controlled by the Fifth Air Force, said the USN. If they were that these strikes were pre-briefed, they were heavy air-power missions outside the bomb line, they did not require mosquito direction and they might have flak suppression aircraft in company: therefore they were “strike”. After some negotiation between the respective commanders, it was agreed that the raids would be coordinated by the Fifth Air Force, the strike leader would check in and out with the ground Tactical Air Control party of the area and mosquito aircraft would mark the targets, just like Close Support.

In return, the Fifth Air Force was held solely responsible for any friendly fire incident. Data at the time suggested chiefly USAF and a few USMC, but no confirmed USN aircraft, had dropped ordnance on own troops. In February 1953 a USAF threat was made to relieve any air group commander whose aircraft was involved and to court-martial pilots responsible for inadvertent friendly fire. This dampened enthusiasm for a while, but by March 1953, as the weather improved and with ground radar assisting, Cherokee strikes regained momentum and continued until the end of the war in July.39

Naval Aviation outcome
Some claim that naval aviation saved South Korea from communist domination. Some others say it was the USAF. Yet others, particularly American naval aviators looking at a broader picture, claim that the converse might well have been true: Korea saved naval aviation. Before anyone tries to weigh the contributions of naval aviation and other arms in saving South Korea, it should be noted that although the June-October 1952 USN air strikes were correlated with changing attitudes in the North Korean negotiators at the Truce Talks, perhaps the most important single factor that contributed to the signing of the armistice on 27 July 1953 was the death of Stalin on 5 March 1953.

Certainly, naval aviation was highly significant and maybe even decisive in a number of battles, including those around Pusan, Inchon and Chosin. Along with the USAF, however, naval aviation achieved little in expensive sideshows like Operation Strangle. Perhaps, above all, naval aviation, and particularly US Marine aviation, showed the USAF how to conduct Army Support, a skill the USAF initially ignored chiefly because it did not fit their overarching strategy and it was difficult. Naval aviation also spotlighted procedural and material weaknesses in their Joint Operations Center command system.

Did Korea save naval aviation? The failure of his USAF-dominated Korean strategy, together with other political machinations, led to Truman sacking Defense Secretary Johnson in September 1950. This alone was good news for the USN and naval aviation in general. This prefaces the approval of the first new carrier construction since Johnson cancelled the USS United States. The USS Forrestal's keel was laid on 14 July 1952.

However, it must be acknowledged that Korea was seen by many in 1950-53 to be a sideshow fought by the Reserves, not a real war. The “real war” was always Euro-centric and it kept America’s newest and biggest three Midway class carriers and the big British fleet carriers in the Atlantic or Mediterranean, far from Korea. Therefore it might be difficult to derive any important generalisation other than to note that Korea was the first of many little wars over the past half century. All were resolved with non-nuclear weapons. None validated the Douhet/Trenchard/Mitchell hard line position that victory could be achieved by air power alone. All American and British interventions employed aircraft carriers and sometimes Air Forces, but all depended on close cooperation with ground troops.
If causality is demanded, let us first remember that it was the British who invented the angled deck, the deck landing mirror and the steam catapult. These three very important components enabled jet aircraft and big bombload-carrying aircraft to operate safely from carriers. The British also invented the Harrier jump jet and ski ramp for medium and small carriers. The Royal Navy might argue persuasively that if naval aviation needed saving, it was these British inventions, rather than the Korean War, that did the job.

Certainly, naval aviation contributed significantly to the defence of South Korea and naval aviation has continued to be an essential element in America's strategy in every war since then. Without naval aviation, especially the USMC intervention, the Pusan Perimeter might well have been lost and we might only conjecture whether there would have been enough political will to stage an Inchon-like invasion against a country not actively engaged in war. Close Support, long regarded as an irrelevant irritant by the USAF, resumed its rightful place, just as the USN, and especially the USMC, so ably demonstrated in Korea.

Contrary to USAF assertions back in 1948 that aircraft carriers would be quickly sunk in future conflicts, it has been not the carrier but the in-country airfield, such as Da Nang, that has proven vulnerable to enemy action. The carrier has also demonstrated a flexibility to attack targets virtually anywhere in the world without having to depend on sometimes convoluted overflight negotiations. Finally, the carrier also has the versatility to be used in many important roles other than war, ranging from disaster relief to space exploration.

References:
Time magazine: Revolt of the Admirals, Time 54/16 (17 October 1949): 23.
Naval Aviation (1912-): Danish Naval Air Service. A low flying H.M. II (HEINKEL H.E.8) passing three DRAGEN Class torpedo boats during a naval exercise in

Websites:
britains-smallwars.com/carriers/Glory.html.
britains-smallwars.com/carriers/Triumph.html.
britains-smallwars.com/korea/kwaircraft.html.
history.navy.mil.htm. (About 220 declassified USN carrier and air group action reports in .pdf format are also on CD.)
USN carrier and air group action reports. http://www.history.navy.mil.htm. (About 220 declassified reports in .pdf format, also available on CD.)

Endnotes:
1. Mossman, Billy C. Mossman is the official US Army historian for Korea.
2. Douhet, Guilio. Douhet is recognized as the first to advance the theory that air power alone could win a war.
4. Cagle, Malcolm W. and Frank A. Manson. pp 37-38. Cagle and Manson were experienced USN officers, with WW II combat experience. They served aboard Valley Forge in Korea chiefly to coordinate the dissemination of USN action information.
7. Cagle and Manson p 53.
8. Lane, Fred and Gerry Lane, 1991.
10. navy.gov.au/spc/history/general/korea.htm. This official RAN website carries limited data, compared with its USN counterpart.
11. ibid.
12. Ogders, George. Ogders was a journalist and FltLt with RAAF 77 Squadron.
13. Evans, Ben. This is a Department of Veterans Affairs booklet about the Korean War.
15. Field, James op. cit.
17. Firkins, Peter.
18. Ogders op. cit. p 101;
19. Catchpole, Brian. p 203.
23. britains-smallwars.com/carriers/Glory.html.
25. Cagle and Manson op. cit. p 45;
29. Cagle and Manson op. cit. p 241.
30. Catchpole op. cit., Kirtland op. cit.
31. Kirtland op. cit.
33. Cagle and Manson op. cit. p 523.
36. Cagle and Manson op. cit. p 442.
37. Griffith op. cit.
38. Cagle and Manson op. cit. p 441-454.
39. Cagle and Manson op. cit. p 460-469.
1939. (Photo: Archives of the Royal Danish Naval Museum). Forward looking naval officers apparently had a sense that the use of aeroplanes could strengthen the Navy and help it to carry out its tasks. Several of the officers of the navy had from the outset been participants in establishing the Aeronautical Society in 1909. Time of pioneering.