The effect of using digital mind mapping on cognitive achievement and performance level of some basic skills in handball

Khaled Thabet Awad[1], Ahmed Maget Hegazy[2]

Öz

This study aims to identify the effect of using digital mind maps to on the cognitive achievement and the performance level of some basic skills in handball. Research population includes the first-year students at the Faculty of Physical Education in Port Said consisting of 200 students. Research Sample both researchers randomly selected the sample of first year students. The total sample size reaches 180 students with a 90.00%, after excluding failed students, re-registered students, the students of other levels of curriculum, practitioners to previous experiences and irregular students. The total number was 20 students with a percentage of (10.00%). They were divided into: Basic Sample: includes 80 students with a 44.44%. They were divided into two equal groups of 40 students. First Exploratory Sample: includes 60 students from the same research population and from outside the basic sample in order to find Tests Validity of the tests with a 33.33%. Second Exploratory Sample: includes 40 students from the same research population and from outside the basic sample in order to find Tests Reliability of the tests and identify the extent of pilot program appropriateness for the sample under discussion with a 22.22%. The first-year students were selected, according to the study plan, which contains a handball curriculum for the students of this educational level. Statistical Treatments: Both researchers conducted data statistically processes, using a statistical package for Social Sciences, SPSS ver. 20.0, in order to identify: arithmetic mean, standard deviation, median, skewness coefficient, correlation coefficient, discriminant validity coefficient, "t" test per one group, "t" test per two groups. The use of mind maps has a positive effect better than (explanation and model) method on the cognitive achievement and the performance level of some basic skills in handball. Active learning techniques, such as the method of digital mind maps in teaching handball curriculum for the students of Faculty of Physical Education should be used.

Anahtar Kelimeler

Basic skills, cognitive achievement, digital mind mapping, handball, performance

Kaynakça

[1] Al-Haliq MA, Oudat MA, Al-Taieb MA. The effect of using video on developing physical fitness of physical
education students at the Hashemite University.


Hemo WIA. The impact of reciprocal learning style and competitive on the achievement cognitive skills in handball, Ph.D. thesis, Faculty of Physical Education for Boys, Helwan University, Egypt, 2010.


Kaynak Göster

Bibtex

@ { turkjkin239078, journal = {Turkish Journal of Kinesiology}, issn = [], eissn = {2459-0134}, address = {Nurtekin ERKMEM}, year = {2016}, volume = {1}, pages = {25 - 31}, doi = [], title = {The effect of using digital mind mapping on cognitive achievement and performance level of some basic skills in handball}, key = {cite}, author = {Awad, Khaled Thabet and Hegazy, Ahmed Maget}}

APA


MLA


Chicago

The effect of using digital mind mapping on cognitive achievement and performance level of some basic skills in handball

Khaled Thabet Awad, Ahmed Maget Hegazy

Turkish Journal of Kinesiology

2016

25-31

1

2459-0134

M3 - UR - Y2 - 2019 ER -
Cognition and test performance in schools 11 controlling for cognitive performance (composite cognitive measure) in assessing how much variation schools explain in achievement (Math and ELA MCAS) (Figure 2b); 2) when removing the controls for 4th-grade MCAS performance in the original analysis and controlling for 8th-grade MCAS in assessing how much variation schools explain in cognitive measures, and. Despite the increase in MCAS Math scores, we observed virtually no effect of oversubscribed charter school attendance on cognitive skills, considered
1. Discussion. Digital technologies are now embedded in our society. Focus has shifted from whether or not to use them in teaching and learning, to understanding which technologies can be used for what specific educational purposes and then to investigate how best they can be used and embedded across the range of educational contexts in schools. With this in mind the findings from the synthesis of the meta-analyses indicate the following overall trends. The implication is that such support should go beyond the teaching of skills in technology and focus on the successful pedagogical use of technology to support teaching and learning aims. Overall, the over-arching implication is that the technology is solely a catalyst for change. The fluid cognitive skills we measured for each student included processing speed, working memory, and fluid reasoning. This approach enables us to generate estimates of the effect of each additional year of actual attendance at a charter school between 5th and 8th grade. For example, it is possible that the oft-discussed challenges some students from high-performing urban schools experience in college (see “No Excuses’ Kids Go to College,” features, Spring 2013) stem in part from deficits in fluid cognitive skills. Indeed, perhaps the most important implication that we draw is that educators seeking to innovate should get about the business of developing and rigorously testing the effects of interventions to raise these fluid cognitive skills.